Knowledge Graph Query Engine
for SNOMED to ICD Code
Mapping

Abstract
This document describes the iterative development of a SNOMED-to-ICD code mapping system

using embedding-based semantic search and hybrid reranking techniques. The goal is to reach
90% Top-10 accuracy. We evaluated three main approaches and achieved 86% using a hybrid
reranker model based on BioBERT embeddings.

1. Overview
This query engine helps users retrieve the top 10 most relevant ICD codes from the knowledge

graph by inputting SNOMED terms. The final aim is to obtain 90% Top-10 accuracy. Currently,
the query engine is passing through LLM (azure open Al) to retrieve the top 10 ICD codes. We
hope to replace the LLM engine with Knowledge graph. As Knowledge graph is better for
structured tasks like ICD mapping because it provides precise, explainable, and rule-based
results, while LLMs may hallucinate or miss domain-specific logic.

Data generation and OpenAl and BioBERT

insertion from embeddings of node

SNOMED to ICD present in knowle-
mapping files dge graph

Knowledge graph

A 4

Query Hybrid model
SNOMDte

Embeddings
present?

Generate embedding
for comparison to
embeddings in
knowledge graph

Output top 10
ICD codes

The above is an overview of the flow of the knowledge graph query engine.

2. Data Processing

Purpose: Three methods were tested for SNOMED-to-ICD mapping: entity type classification,
paragraph enrichment, and direct mapping. Direct insertion of mappings without additional
enrichment achieved the highest accuracy (82%) and was chosen for final use.

Method 1: GPT-based Entity Type Classification

I have tried categorising the Snomed descriptions into the 12 entity types available. The purpose
of this is to do entity linking so that it can look out for keywords in the Snomed description in
order to accurately output the relevant ICD codes.

However, it affects the embeddings as embedding a word by itself is not useful to output the ICD
codes. There is also limited information for some entity types such as complication, trimester and
other info.

Entity Types:
1. Condition
2. Body part
3. Severity
4. Encounter type
5. Cause
6. Laterality
7. Person
8. Fetus
9. Procedure

10. Complication
11. Trimester
12. Other info

I have attempted to generate the entity types via both GPT 40 and 40-mini. The results for 40
was better as it is able to identify and break down more specific words into each category (eg.
unspecified). I decided to use the results from that for the following attempts.

The accuracy of using this method was not as satisfactory of up to 62% for unseen data even
though all the seen data was able to be correctly predicted since it is already in the knowledge
graph.

Method 2: Paragraph Enrichment Using GPT

Since embedding requires more chunks of text, I generated descriptions for each Snomed term to
increase the paragraph of text available for embeddings. The use GPT 4o - mini to generate the
paragraph of description using prompt as follows:

"Explain each of the following medical terms in a paragraph suitable for non-medical users. "
"Do not repeat the term itself, and do not number or label the answers. Just return one
paragraph per term, separated by line breaks:\n\n"
F"{listed terms}"

The following is an example of the output:

I A B C D E F

id |'ned_conce|d_preferre#am_descri‘dlﬂam_con:i snomed_description

Cholera caused by a specific
strain of bacteriais an
infectious disease that leads
to severe diarrhea and
dehydration. This particular
strain, known asthe
Classical biotype, is one of
the older forms ofthe
bacteria and can cause
outbreaks, especially in
areas with poor sanitation.
The diseaseis primarily
transmitted through
contaminated water or
food, and without prompt
treatment, it can be life-
threatening. Symptoms
usually appear suddenly
and can escalate quickly,
necessitating immediate

0 2.4E+08 Choleradu Choleradu: A0O0.0 medical attention.

Although the accuracy has increased slightly, it reaches a maximum of 70% after all the
following approaches are used. Hence, it did not help much in the retrieval process.

Method 3: Direct Mapping Insertion

Direct insertion of Snomed to ICD File mapping and ICD masterfile gave the highest accuracy
when testing for unseen data of up to 82% accuracy as the base model. So I proceed on with this
method instead for the insertion of data later on.

This means that no additional information or classification was added to it and embeddings are
done on both Snomed and ICD terms and description later on.

Method 4: Categorisation of ICD Description

I have tried categorising the ICD descriptions into the 12 entity types available. The purpose of
this is to do entity linking so that it can look out for keywords in the ICD description in order to
accurately output the relevant ICD codes.

All the ICD codes in the master sheet have been categorised into the following:

Entity Types:
1. Condition
2. Body part
3. Severity
4. Encounter type
5. Cause
6. Laterality
7. Person
8. Fetus
9. Procedure

10. Complication
11. Trimester
12. Other info

3. Insertion of Data

Purpose: The SNOMED-to-ICD mappings and ICD masterfile entries were inserted into Neo4;
to form a knowledge graph. Linked SNOMED terms connect to ICD nodes via MAPS_TO
relationships, while unlinked ICD codes remain as standalone nodes.

It involves the process of inserting data from Snomed to ICD code mapping files and ICD codes
master files into the neo4j database to form the knowledge graph. It will form relations for each
Snomed term to icd code or remain as an individual ICD node if it is not linked to any. The
following illustrations show the visualisation of how the knowledge graph is like.

This is an example of an ICD code node (red) connected to relevant SNOMED terms (blue)

This is an example of how an ICD code is not connected to any Snomed term as it is extracted
from the masterlist sheet

4. Embedding Models Evaluated

Purpose: Several embedding models were tested, including SapBERT, BioBERT, and OpenAl's
ADA model. Due to compatibility issues, only BioBERT (768D) and OpenAl (1536D)

embeddings were used, and both were stored on SNOMED and ICD nodes in Neo4j for
similarity-based retrieval.

I have tried several embedding models as listed below:
1. Sapbert: Cambridgeltl/SapBERT-from-PubMedBERT-fulltext - incompatible version
2. Embedding in Neo4;j (gds.knn.stream) - low accuracy
3. BioBert/ ClinicalBert: emilyalsentzer/Bio Clinical BERT
4. OpenAl embedding: test-embedding-ada-002

Due to compatibility version issues with neo4j database, we have scaled to using only biobert
embedding (768 dimension) and OpenAl embedding (1536 dimension).

Biobert embedding model: emilyalsentzer/Bio_Clinical BERT
OpenAl embedding model: test-embedding-ada-002

Both Snomed and ICD code nodes have these 2 embeddings available as shown below.

Node properties ©

(icp

<elementl 4:c1flbe58-fa47-4a10- ©
d> b940-aaa3d6a02699:94
<id> 94 o
azure_ope [0.027539419,0.0051141 o
nai_embed 9,0.006693431,-0.01956
ding 3451,-0.03437961,0.016
283734,-0.005816075,-0.
014318456,0.006115971
,0.017866166,-0.005276
9,0.012691358,-0.00...
Show all]
biobert_e [0.3476295471191406,0.
mbedding 28208884596824646,-0.
2972734272480011,-0.1
1958902329206467,0.00
6737548392266035,0.07
585808634757996,0.066

[lustration for ICD codes

Node properties ©

<elementl 4:c1f1be58-fa47-4a10-
d> b940-aaa3d6a02699:18

<id> 18

azure_ope [-0.0017564918,0.00286

nai_embed 25503,0.0015512189,-0.

ding 031117758,-0.03632122
3,0.028516024,-0.00634
97745,-0.026249168,-0.0
10522851,0.009350783,-
0.0052904054,0.0073...
Sh all]

bio_bert_s [0.2019355446100235,0.

ci_embedd 45404356718063354,0.1

ing 5173223614692688,0.51
08880400657654,-0.624
192476272583,-0.07467
050850391388,-0.40119

Ilustration of SNOMED terms

5. Setup for Query Embedding

Purpose: For query embedding, BioBERT and OpenAl models were used to generate
embeddings for unseen SNOMED terms, which were then compared to existing embeddings in
the knowledge graph using GDS cosine similarity.

BioBERT:

For testing of user queries, the code ensures that the biobert embeddings are available for the
Snomed term queries to create vector index:

def ensure_vector_index_exists();|
with driver.session() as session:
print("®. Checking for BioBERT vector indexes...")
indexes = session.run("SHOW INDEXES").data()

index_names = [i["name"] for i in indexes]

if "biobert_embedding_index" not in index_names:
print("# Creating BioBERT vector index for SNOMED...
session.run("""
CREATE VECTOR INDEX biobert_embedding_index
FOR (s:SNOMED) ON (s.biobert_embedding)
OPTIONS {
indexConfig: {
‘vector.dimensions : 768,
“vector.similarity_function: 'cosine'

}
||||||)

else it will undergo the embedding process:

def get_embeddings(texts):
print(f"® Generating embedding for input...")
start = time.time()
embeddings = BIOBERT_MODEL.encode(texts, show_progress_bar=True).tolist()
print(f"@ Embedding completed in {time.time() - start:.2f} sec")
return embeddings

before moving on to using GDS cosine similarity function to extract the top 10 similar ICD
codes.

def query_direct_icds(session, embedding, top_k):
results = session.run("""
CALL db.index.vector.queryNodes('biobert_embedding_index_icd', $topK, $embedding)
YIELD node, score
RETURN node.description AS term, node.code AS id, score,

node.code AS icd_code, node.description AS icd_description,
'ICD" AS source
ORDER BY score DESC
LIMIT $topK
mun o {"topkK": top_k, "embedding": embedding})
return results.data()

The embeddings generated for the queried Snoemed term can be compared to the embeddings of
the Snomed term in the knowledge graph or directly to the ICD codes embeddings itself.

Results:

The accuracy of this model is 72%. There are specific chapters that cannot be predicted such as
T43 and S40. Also, for subchapters most of the “others” chapters (eg .8/.9) are predicted wrongly
as well.

OpenAl:

For testing of user queries, the code ensures that the azure _openai_embeddings are available for
the Snomed term queries to create vector index:

def fetch_all_snomed_and_icd data():
all_records = [1]
page_size = 10000
skip = @

with driver.session() as session:
while True:

query = """

MATCH (s:SNOMED)

WHERE s.description IS NOT NULL AND s.preferred_term IS NOT NULL

OPTIONAL MATCH (s)-[:MAPS_TO]->(i:ICD)

WHERE i.description IS NOT NULL

RETURN s.concept_id AS snomed_id, s.description AS snomed_text,
s.preferred_term AS snomed_term, i.code AS icd_code,
i.description AS icd_description

SKIP $skip LIMIT $limit

results = session.run(query, skip=skip, limit=page_size).data()
all_records.extend(results)

if len(results) < page_size:
break

skip += page_size
print(f"Fetched {len(all_records)} records so far...")

else it will undergo the embedding process:

async def get_embeddings_async(texts, batch_size=EMBEDDING_BATCH_SIZE):
""""Asynchronously get embeddings from Azure OpenAI API"""
all_embeddings = []

filtered_texts = [text for text in texts if text]

batches = [filtered_texts[i:i+batch_sizel for i in range(@®, len(filtered_texts), batch_size)]
print(f"® Processing {len(filtered_texts)} texts in {len(batches)} batches")

headers = {
"Content-Type": "application/json",
"api-key": AZURE_OPENAI_API_KEY,
"Accept": "application/json"

before moving on to comparing with the embeddings in the knowledge graph

The embeddings generated for the queried Snoemed term can be compared to the embeddings of
the Snomed term in the knowledge graph or directly to the ICD code embeddings itself.

Results:

The accuracy of this model is 74%. There are still specific chapters that cannot be predicted such
as T43 and S40. For subchapters most of the “others” chapters (eg .8/.9) are predicted correctly.
However subchapters like (eg .42) are still incorrect.

6. Query hybrid model

Purpose: After doing random sampling of queries using unseen data for the 2 individual models
above, I discovered that some outputs were successfully retrieved from only one of the models.
Hence, I attempt to use the hybrid method to obtain higher accuracy .

Approach 1: Merge Top-K from Both Models

I tried to obtain the top 20 ICD codes from each model and sort them individually to obtain the
top 5 ICD codes from each model to get the total of 10 icd codes output to users as visualized
from the bottom.

Merge 40

OpenAl
User Output top ICD codes

—]201CD co- and sort

query
BioBERT desteach according to 1.
similarity 10.

score (DESC)

Output top

Firstly, it will query from both models to retrieve top 20 ICD codes respectively:

try:
openai_results = query_openai(query_text, top_k=20)
biobert_results = query_biobert(query_text, top_k=20)
except Exception as e:
print(f"> Error fetching results: {e}")
return []

print(f"@ OpenAl returned {len(openai_results)} results")
print(f"g@ BioBERT returned {len(biobert_results)} results")

After which, it will merge the top 40 ICD codes and remove duplicates of ICD codes to keep the
highest score:

merged = {}
for entry in combined:
code = entry["icd_code"]
if code not in merged or entry["score"] > merged[code] ["score"]:

merged[code] = entry

unique_predictions = list(merged.values())
unique_predictions.sort(key=lambda x: -x["score"])
final_top = unique_predictions[:top_k]

Lastly, it will output the top 10 ICD codes that are sorted based on confidence score:

print(f"\n@ Final Top-{top_k} ICD Predictions (Expanded Pool, Deduped):")
for i, res in enumerate(final_top):

print(f"{i+1}. [{res['source'l}] ICD: {res['icd_code'l} | {res['icd_description']l} (Score: {round(res['score'l, 4)})")

return final_top

Results:

The accuracy increased up to 84% with the hybrid method, also solving the issue of (.8 and .9)
chapters. However, for chapters that are in the ICD code masterlist sheet, it is still very hard to
predict it as there are no Snomed terms linked to it and comparing the embeddings it differs by
quite a bit.

The reason for choosing K = 20 is after testing out 10,30,40,and 50 where K increases from 82%
(K=10) to 84% followed by a dip back to 82% when it reaches K=30 and further on. Hence, |
took the highest performing K for the following attempts.

Approach 2: Hybrid + Reranking using open source model

I tried including a reranking model to it using different dimensions as well (384, 768, 1536).
Hypothetically, higher dimensions should allow for embeddings to capture more nuanced
semantic relationships. However, the following results will prove otherwise.

OpenAl Rerank
User Output top Merge 40 based on Output top

[ICD codes & 5
—| 20ICD reranking 10 ICD cdes

query codes each REMOYS model
BIOBERT duplicates (cos.sim.)

I went to look up the available open source reranking models of the various dimensions. The
three dimensions above are the one compatible with the neo4j database.

Model Name Dimensions

pritamdeka/S-BiomedBERT-MS— 768
MARCO

pritamdeka/BioBERT-mnli-snli-

scinli-scitail-mednli

intfloat/e5-large-v2

sentence-transformers/all-

MinilM-L6-v2

sentence-
transformers/paraphrase—
MinilM-L12-v2

microsoft/BiomedVLP-CXR-BERT-

general

GanjinZero/biobert-nli

Use With

SentenceTransformer

SentenceTransformer

SentenceTransformer

SentenceTransformer

SentenceTransformer

transformers

transformers

Notes

Biomedical domain.
Trained for MS MARCO,
suitable for retrieval
tasks. @

Biomedical + natural
language inference fine-

tuned

State-of-the-art reranker
model, very high quality.
v

Lightweight and fast
general-purpose model

Good general semantic

similarity baseline

Medical vision-language
pretrained. Need custom

pooling for embeddings

NLI fine-tuned BioBERT,
needs pooling logic

I ERIVELY

I have attempted to include all the models except the 1024 dimension one and 1536 dimension as
the params were too big and my computer crashed.

Firstly, it will query both the models once the query is passed. Each model will retrieve the top
20 ICD codes:

(variable) enriched_query: str | Any

try:
openai_results = query_openai(enriched_query, top_k=20)
biobert_results = query_biobert|(enriched_query, top_k=28)
except Exception as e:
print{(f">{ Error fetching results: {e}")
return []

print(f"@& OpenAIl returned {len(openai_results)}")
print(f"g& BioBERT returned {len(biobert_results)}")

After which, it will remove the duplicates of ICD codes and keep the highest score and merge the
top 40 ICD codes:

merged = {}
for entry in combined:
code = entry["icd_code"]
if code not in merged or entry["score"] > merged[code] ["score"]:
merged[code]l = entry

unique_predictions = list(merged.values())

It will then pass through the Reranking model to get sorted based on cosine similarity and output
the top 10 ICD codes:
|

print("® Reranking by semantic similarity with ICD descriptions...")
query_embed = rerank_model.encode(f"query: {query_text}", convert_to_tensor=True)

for entry in unique_predictions:
entry_desc = entry["icd_description"] or "*"
entry_embed = rerank_model.encode(f"passage: {entry_desc}", convert_to_tensor=True)
entry["rerank_score"] = util.cos_sim(query_embed, entry_embed).item()

if icd_chapter_hint and entry["icd_code"].startswith(icd_chapter_hint):
entry["rerank_score"] += 0.05

if enrichment_result.get("icd_code", "")[:4] == entry["icd_code"][:4]:
entry["rerank_score"] += 0.1

final_top = sorted(unique_predictions, key=lambda x: -x["rerank_score"])[:top_k]

print(f"\n@ Final Top-{top_k} ICD Predictions (Reranked):")
for i, res in enumerate(final_top):
print(f"{i+1}. [{res['source'l}] ICD: {res['icd_code'l} | {res['icd_description']} (Score: {round(res['rerank_score'l, 4

return final_top

Results:

Based on the evaluation, the model that output the highest accuracy of 86% was the second one
“pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli”. This is hence the highest accuracy I
could obtain so far after trying out many different methods. However, there are still chapters
starting with “T”, “S” and “L” that are predicted wrongly as well as the niche subchapters that
were previously mentioned. The biggest problem was with “S63.82” which heavily affects the
accuracy since it took up a large proportion of the unseen test data.

Approach 3: Hybrid + Reranking using GDS cosine similarity (inbuilt function)

Rerank
Output top Merge 40 based on

20ICD | ICD codes & | reranking

—
codes each [EmOM model
BIOBERT duplicates (cos.sim.)

User
query

Output top
10 1CD cdes |

Firstly, I retrieve 10000 embeddings from each embedding model:

smart_hybrid_guery_simple_boosted(query_text, groundtruth_code= , top_k=10):
print{f"\n®, ICD Hybrid ¢ (Bor) for: '{query_text}'")

openai_results = query_openai(query_text, top_k=18000)
iob ults = query_biobert{query_text, top_k=188@8)

return []

Based on error analysis, I used boosting logic to reward high error clusters like (eg. S60, T89) -
serves as a tiebreaker.

If a predicted code shares the same first 4 or 3 characters, or belongs to the same chapter as the
correct code, it receives a higher score—because these usually indicate codes from the same
diagnostic family. Additionally, codes from known high-error clusters, get an extra score boost to

help recover common past mistakes. This approach complements semantic similarity by adding
domain knowledge, ensuring that structurally relevant codes are more likely to appear in the top
predictions:

high_error_prefixes = {"Se@", "S63", "T89", "s9@", 'S93", "C79", "Le3", "T43", "K@s"}
error_suffix_boost = {

''88": @.20, "89": 0.08, "50": 0.63, "51": @.08,

"650": 0.03, "61": 0.08, "62": 0.63, "01": @0.15, "81": 0.1@

entry merged.values():
icd_code = entryl
icd_desc = entryl

icd_code[:31] high_error_prefixes:
entry[1 +=

icd_code:
suffix = icd_code.split('.')[-1]
suffix error_suffix_boost:

entry| 1 += error_suffix_boost [suffix]

query_keywords = set(query_text.lower().split())
desc_keywords = set(icd_desc.lower().split())
query_keywords & desc_keywords:
entry[1 +=

Rationale:
High-error clusters (prefix boost):
e These are known problematic ICD chapters where models tend to underperform.

e Boosting helps prioritize commonly mistaken groups (like injury codes S60, cancer
codes C79, etc.).

Suffix boost:

e (odes like .88, .89, .07 often mean “other” or “unspecified” and frequently occur in
ambiguous descriptions.

e These are known to be common fallback answers — boosting them helps reduce severe
misses.

Keyword overlap:
e [f query mentions a term like “finger” and the ICD description also contains “finger”, it
gets a small lift.

Boost Type Description Score Boost

Prefix-based cluster boost If the ICD code'’s prefix (first 3 characters) is in the high_error_prefixes +0.05
set (e.g., S60, T89 , €79, etc.), apply a boost.

Suffix-based boost If the ICD code has a decimal (e.g., T85.88), check the suffix (88, 89, Varies (e.g., +0.20 for 88, +0.08 for 89

etc.) and boost according to the error_suffix_boost dictionary.

Keyword overlap between query and ICD description If any words from the input query (query_text) appear in the ICD

description (case-insensitive), apply a small boost.

After which, I use GDS cosine similarity as my reranking function to output the top 10 ICD
codes:

h driver.session() as session:

gds_preds = session.run{query, {"term": guery_text, "t 't top_k}).data()
| gp in gds_preds:
gds_code = gp["ic ¢
it gds_code merged:
merged [gds_code] =

! gds_code,
n': gp

Results:
Based on the evaluation, this gives the highest accuracy of 95.74% while I am still attempting to

find the optimised K for retrieval of embeddings. The main clusters of errors come from chapters
S60, S50 and S40. Specifically S60.88 took up 20% of the error.

Final Top-10 ICD Predictions (Boosted + GDS):

. [BioBERT] ICD: K@8.2 | Atrophy of edentulous alveolar ridge (Score: 0.9755)

. [BioBERT] ICD: K06.8 | Other specified disorders of gingiva and edentulous alveolar ridge (Score: 0.974)

. [BioBERT] ICD: K@6.2 | Gingival and edentulous alveolar ridge lesions associated with trauma (Score: 0.9714)

. [BioBERT] ICD: T85.88 | Other complications of internal prosthetic device, implant and graft, NEC (Score: 0.9691)
. [BioBERT] ICD: T85.78 | Infection and inflammatory reaction due to other internal prosthetic devices, implants and grafts (Score: 0.9687)
. [BioBERT] ICD: K08.88 | Other specified disorders of teeth and supporting structures (Score: 0.9681)

. [BioBERT] ICD: K07.8 | Other dentofacial anomalies (Score: 0.9643)

. [BioBERT] ICD: S02.67 | Fracture of alveolar border of body (Score: 0.9638)

. [BioBERT] ICD: K@7.6 | Temporomandibular joint disorders (Score: 0.9634)

. [BioBERT] ICD: K07.0 | Major anomalies of jaw size (Score: 0.9632)

Enter clinical phrase (or 'exit'): [

L)
1
2
3
4
5
6
7
8
9
10
B

7. Evaluation Methodology

Accuracy = percentage of queries where the ground truth ICD code is present in the top 10
predicted codes.

I used a gradual implementation of methods to slowly improve the accuracy of the model.

I first tested the individual models where BioBert is a medical specific embedding model and
OpenAl is a general embedding model. Both had its pros and cons, I decided to use the ensemble
method by combining both models so that it can take in a wider diversity of SnoMed terms
depending of how specific the Snomed term is.

Furthermore, I tried different reranking models which help to reorder predicted ICD codes based
on deeper semantic understanding, improving the chances of correct predictions.

The inbuilt GDS cosine similarity in Neo4;j is often better than using an open-source model for
retrieval tasks because it's tightly integrated into the graph engine, allowing high-speed,
memory-etficient similarity searches directly on stored embeddings, without needing to export
data or build custom indexing pipelines. It leverages optimized native graph structures, parallel
computation, and supports dynamic queries on live graph data, making it faster, more scalable,
and easier to maintain than managing external models or embedding indexes separately.

Approach Accuracy
BioBert model 72%
OpenAl model 74%
Hybrid (Merge K) 84%
Hybrid + Rerank using open 86%
source model

Hybrid + GDS cosine 95%
similarity

8. Challenges Identified

There are a few challenges along the way when trying to achieve the goal of 90% accuracy for
top 10 ICD codes.

1. Issue with .8/.9 chapters

a. Initially there were alot of .8/.9 subchapters that was not able to be predicted due
to the limited number of Snomed terms that formed relations with the ICD codes
in the knowledge graph

b. This was probably due to the limitations of LLM generation when it was
classifying or generating description as after I did direct insertion of the Snomed
terms there was an accuracy boost as about 302 unseen data contains such
chapters

c. Currently, it is left with 38% (116/302) that are still predicted inaccurately

2. Wrong predictions of subchapters
a. The above is an example of the wrongly predicted subchapters. This is a current
problem that is affecting accuracy. 18/220 errors are derived from the wrongly
predicted subchapters

A B C
query | gold_icd |top1_prede
ligament of left wrist joint S63.50 S63.3

Traumatic rupture of
collateral ligament of joint
of left little finger S63.68 S63.4

Traumatic rupture of volar
plate of joint of left little
finger S63.68 S63.4

Traumatic rupture of volar
plate of joint of left ring
finger S63.68 S63.4

Traumatic rupture of

ligament of joint of right

middle finger S63.68 S63.4
Traumatic rupture of

ligament of right wrist joint S63.50 S63.3
Traumatic rupture of

ligament of joint of right
index finger S63.68 S63.4

Traumatic rupture of
collateral ligament of joint
ofright little finger S63.68 S63.4

Traumatic rupture of volar
plate of joint of right little
finger S63.68 S63.4

Traumatic rupture of volar
plate of joint of right index
finger $63.68 S63.4

Traumatic rupture of
collateral ligament of joint
ofright index finger $63.68 S63.4

3. Uncertainty of the predictions against ground truth
a. After some random sampling, it is realised that some of the ICD codes generated
by the model are more specific than what the grountruth asked for. I have
compiled a list for verification and the following is an example.

SCT_Preferred_term Stds ICD-10AM ICD-10AM Description biobert_check | Remark Note

Traumatic rupture of

T e Of tof |s53.42 Sprain and strain of ulna 1.1CD: $53.3 | Traumatic rupture of ulnar collateral
right elbow ¢ - collateral ligament ligament (Score: 0.9931)
3;;‘;'[::;‘;;:“;‘{“{:* :rfmm of |ss342 Sprain and strain of ulna 1.1CD: $533 | Traumatic rupture of ulnar collateral
ot olbony & > collateral ligament ligament (Score: 0.9936)

) Other superficial injuries of 1.1CD: $90.3 | Contusion of other and unspecified suggested with reference to Haematoma of
Haematoma of right ankle $90.88 ankle and foot parts of foot (Score: 0.9925) right foot parked under $90.3

Other superficial injuries of 1.1CD: $90.3 | Contusion of other and unspecified suggested with reference to Haematoma of

Hacmatoma of left ankle 590.88 ankle and foot parts of foot (Score: 0.9925) left foot parked under $90.3

4. 1ICD codes not found in Knowledge graph
a. Previously, I found that a few of the ICD codes are not found in the SNOMED to
ICD code mapping file and hence not inserted into the Knowledge graph
b. After which, I got the ICD code master sheet and updated the knowledge graph
c. Currently, the output of the predicted ICD codes for such a situation is still wrong.
Perhaps, it is due to it existing as individual nodes and there are no relations and
also the embeddings may be far fetched in comparison.

9. Conclusion and Future Work

The above are all the attempts I have made to reach the current accuracy of 95%. However, there
are still improvements to be made since it is still unsatisfactory for now. One of the methods is to
customize cypher queries (similar to customising prompts) to obtain the desired output.

However, given the number of edge cases above, it might take awhile to continue improving the
code such that the cases can be solved.

® Evaluation Summary:
Top-1 Accuracy: 71.96%

Top-3 Accuracy: 96.62%
Top-10 Accuracy: 96.62%

	Abstract
	1. Overview
	
	2. Data Processing
	3. Insertion of Data
	4. Embedding Models Evaluated
	5. Setup for Query Embedding
	6. Query hybrid model
	7. Evaluation Methodology
	8. Challenges Identified
	9. Conclusion and Future Work

