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Abstract 
This document describes the iterative development of a SNOMED-to-ICD code mapping system 
using embedding-based semantic search and hybrid reranking techniques. The goal is to reach 
90% Top-10 accuracy. We evaluated three main approaches and achieved 86% using a hybrid 
reranker model based on BioBERT embeddings. 

1. Overview 
This query engine helps users retrieve the top 10 most relevant ICD codes from the knowledge 
graph by inputting SNOMED terms. The final aim is to obtain 90% Top-10 accuracy. Currently, 
the query engine is passing through LLM (azure open AI) to retrieve the top 10 ICD codes. We 
hope to replace the LLM engine with Knowledge graph. As Knowledge graph is better for 
structured tasks like ICD mapping because it provides precise, explainable, and rule-based 
results, while LLMs may hallucinate or miss domain-specific logic. 

 



 
 

The above is an overview of the flow of the knowledge graph query engine. 
 

 

2. Data Processing 
 
Purpose: Three methods were tested for SNOMED-to-ICD mapping: entity type classification, 
paragraph enrichment, and direct mapping. Direct insertion of mappings without additional 
enrichment achieved the highest accuracy (82%) and was chosen for final use. 
 
Method 1: GPT-based Entity Type Classification 

I have tried categorising the Snomed descriptions into the 12 entity types available. The purpose 
of this is to do entity linking so that it can look out for keywords in the Snomed description in 
order to accurately output the relevant ICD codes.  
 



However, it affects the embeddings as embedding a word by itself is not useful to output the ICD 
codes. There is also limited information for some entity types such as complication, trimester and 
other_info. 
 
Entity Types: 

1. Condition 
2. Body part 
3. Severity 
4. Encounter type 
5. Cause 
6. Laterality 
7. Person 
8. Fetus 
9. Procedure 
10. Complication  
11. Trimester 
12. Other info 

   
I have attempted to generate the entity types via both GPT 4o and 4o-mini. The results for 4o 
was better as it is able to identify and break down more specific words into each category (eg. 
unspecified). I decided to use the results from that for the following attempts.  
 
The accuracy of using this method was not as satisfactory of up to 62% for unseen data even 
though all the seen data was able to be correctly predicted since it is already in the knowledge 
graph.  
 
Method 2: Paragraph Enrichment Using GPT 

Since embedding requires more chunks of text, I generated descriptions for each Snomed term to 
increase the paragraph of text available for embeddings. The use GPT 4o - mini to generate the 
paragraph of description using prompt as follows: 
 
"Explain each of the following medical terms in a paragraph suitable for non-medical users. " 
        "Do not repeat the term itself, and do not number or label the answers. Just return one 
paragraph per term, separated by line breaks:\n\n" 
        F"{listed_terms}" 
 
The following is an example of the output: 



 
 
Although the accuracy has increased slightly, it reaches a maximum of 70% after all the 
following approaches are used. Hence, it did not help much in the retrieval process. 
 
Method 3: Direct Mapping Insertion 

Direct insertion of Snomed to ICD File mapping and ICD masterfile gave the highest accuracy 
when testing for unseen data of up to 82% accuracy as the base model. So I proceed on with this 
method instead for the insertion of data later on.  
 
This means that no additional information or classification was added to it and embeddings are 
done on both Snomed and ICD terms and description later on. 
 
Method 4: Categorisation of ICD Description 
 



 
 
I have tried categorising the ICD descriptions into the 12 entity types available. The purpose of 
this is to do entity linking so that it can look out for keywords in the ICD description in order to 
accurately output the relevant ICD codes.  
 
All the ICD codes in the master sheet have been categorised into the following: 
 
Entity Types: 

1. Condition 
2. Body part 
3. Severity 
4. Encounter type 
5. Cause 
6. Laterality 
7. Person 
8. Fetus 
9. Procedure 
10. Complication  
11. Trimester 
12. Other info 

 
 

3. Insertion of Data 
 
Purpose: The SNOMED-to-ICD mappings and ICD masterfile entries were inserted into Neo4j 
to form a knowledge graph. Linked SNOMED terms connect to ICD nodes via MAPS_TO 
relationships, while unlinked ICD codes remain as standalone nodes. 
 



It involves the process of inserting data from Snomed to ICD code mapping files and ICD codes 
master files into the neo4j database to form the knowledge graph. It will form relations for each 
Snomed term to icd code or remain as an individual ICD node if it is not linked to any. The 
following illustrations show the visualisation of how the knowledge graph is like.  
 

 
This is an example of an ICD code node (red) connected to relevant SNOMED terms (blue) 

 

 
This is an example of how an ICD code is not connected to any Snomed term as it is extracted 

from the masterlist sheet 
 

4. Embedding Models Evaluated 
 
Purpose: Several embedding models were tested, including SapBERT, BioBERT, and OpenAI's 
ADA model. Due to compatibility issues, only BioBERT (768D) and OpenAI (1536D) 



embeddings were used, and both were stored on SNOMED and ICD nodes in Neo4j for 
similarity-based retrieval. 
 
I have tried several embedding models as listed below: 

1. Sapbert: Cambridgeltl/SapBERT-from-PubMedBERT-fulltext - incompatible version 
2. Embedding in Neo4j (gds.knn.stream) - low accuracy  
3. BioBert/ ClinicalBert: emilyalsentzer/Bio_ClinicalBERT 
4. OpenAI embedding:  test-embedding-ada-002 

 
Due to compatibility version issues with neo4j database, we have scaled to using only biobert 
embedding (768 dimension) and OpenAI embedding (1536 dimension).  
 
Biobert embedding model: emilyalsentzer/Bio_ClinicalBERT 
OpenAI embedding model: test-embedding-ada-002 
 
Both Snomed and ICD code nodes have these 2 embeddings available as shown below.  
 

 
Illustration for ICD codes 

 



 
Illustration of SNOMED terms 

 

5. Setup for Query Embedding 
 
Purpose: For query embedding, BioBERT and OpenAI models were used to generate 
embeddings for unseen SNOMED terms, which were then compared to existing embeddings in 
the knowledge graph using GDS cosine similarity.  
 
BioBERT: 

For testing of user queries, the code ensures that the biobert_embeddings are available for the 
Snomed term queries to create vector index: 



 
 
else it will undergo the embedding process: 

 
 
before moving on to using GDS cosine similarity function to extract the top 10 similar ICD 
codes.

 
 
The embeddings generated for the queried Snoemed term can be compared to the embeddings of 
the Snomed term in the knowledge graph or directly to the ICD codes embeddings itself. 
 



Results: 
The accuracy of this model is 72%. There are specific chapters that cannot be predicted such as 
T43 and S40. Also, for subchapters most of the “others” chapters (eg .8/.9) are predicted wrongly 
as well. 
 
OpenAI: 

For testing of user queries, the code ensures that the azure_openai_embeddings are available for 
the Snomed term queries to create vector index: 

 
 
else it will undergo the embedding process: 



 
 
before moving on to comparing with the embeddings in the knowledge graph 
 
The embeddings generated for the queried Snoemed term can be compared to the embeddings of 
the Snomed term in the knowledge graph or directly to the ICD code embeddings itself. 
 
Results: 
The accuracy of this model is 74%. There are still specific chapters that cannot be predicted such 
as T43 and S40. For subchapters most of the “others” chapters (eg .8/.9) are predicted correctly. 
However subchapters like (eg .42) are still incorrect. 
 

6. Query hybrid model 
 
Purpose: After doing random sampling of queries using unseen data for the 2 individual models 
above, I discovered that some outputs were successfully retrieved from only one of the models. 
Hence, I attempt to use the hybrid method to obtain higher accuracy . 
 
Approach 1: Merge Top-K from Both Models 

I tried to obtain the top 20 ICD codes from each model and sort them individually to obtain the 
top 5 ICD codes from each model to get the total of 10 icd codes output to users as visualized 
from the bottom.  
 



 
 

 
Firstly, it will query from both models to retrieve top 20 ICD codes respectively: 

 
 
After which, it will merge the top 40 ICD codes and remove duplicates of ICD codes to keep the 
highest score: 



 
 
Lastly, it will output the top 10 ICD codes that are sorted based on confidence score: 

 
 
Results: 
The accuracy increased up to 84% with the hybrid method, also solving the issue of (.8 and .9) 
chapters. However, for chapters that are in the ICD code masterlist sheet, it is still very hard to 
predict it as there are no Snomed terms linked to it and comparing the embeddings it differs by 
quite a bit.  
 
The reason for choosing K = 20 is after testing out 10,30,40,and 50 where K increases from 82% 
(K=10) to 84% followed by a dip back to 82% when it reaches K=30 and further on. Hence, I 
took the highest performing K for the following attempts. 
 
Approach 2: Hybrid + Reranking using open source model 
I tried including a reranking model to it using different dimensions as well (384, 768, 1536). 
Hypothetically, higher dimensions should allow for embeddings to capture more nuanced 
semantic relationships. However, the following results will prove otherwise.  

 



 
 
I went to look up the available open source reranking models of the various dimensions. The 
three dimensions above are the one compatible with the neo4j database.  
 



 
 

I have attempted to include all the models except the 1024 dimension one and 1536 dimension as 
the params were too big and my computer crashed.  
 
Firstly, it will query both the models once the query is passed. Each model will retrieve the top 
20 ICD codes: 



 
 
After which, it will remove the duplicates of ICD codes and keep the highest score and merge the 
top 40 ICD codes: 

 
 
It will then pass through the Reranking model to get sorted based on cosine similarity and output 
the top 10 ICD codes: 

 
 
Results: 



Based on the evaluation, the model that output the highest accuracy of 86% was the second one  
“pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli”. This is hence the highest accuracy I 
could obtain so far after trying out many different methods. However, there are still chapters 
starting with “T”, “S” and “L” that are predicted wrongly as well as the niche subchapters that 
were previously mentioned. The biggest problem was with “S63.82” which heavily affects the 
accuracy since it took up a large proportion of the unseen test data. 
 
Approach 3: Hybrid + Reranking using GDS cosine similarity (inbuilt function) 

 
 

Firstly, I retrieve 10000 embeddings from each embedding model: 

 
 
Based on error analysis, I used boosting logic to reward high error clusters like (eg. S60, T89) - 
serves as a tiebreaker. 
 
If a predicted code shares the same first 4 or 3 characters, or belongs to the same chapter as the 
correct code, it receives a higher score—because these usually indicate codes from the same 
diagnostic family. Additionally, codes from known high-error clusters, get an extra score boost to 



help recover common past mistakes. This approach complements semantic similarity by adding 
domain knowledge, ensuring that structurally relevant codes are more likely to appear in the top 
predictions: 

 
 

 
 
Rationale: 
High-error clusters (prefix boost): 

● These are known problematic ICD chapters where models tend to underperform. 
 

● Boosting helps prioritize commonly mistaken groups (like injury codes S60, cancer 
codes C79, etc.). 

Suffix boost: 



● Codes like .88, .89, .01 often mean “other” or “unspecified” and frequently occur in 
ambiguous descriptions. 
 

● These are known to be common fallback answers — boosting them helps reduce severe 
misses. 

Keyword overlap: 
● If query mentions a term like “finger” and the ICD description also contains “finger”, it 

gets a small lift. 
 

 
 
After which, I use GDS cosine similarity as my reranking function to output the top 10 ICD 
codes: 

 



 
Results: 
Based on the evaluation, this gives the highest accuracy of 95.74% while I am still attempting to 
find the optimised K for retrieval of embeddings. The main clusters of errors come from chapters 
S60, S50 and S40. Specifically S60.88 took up 20% of the error.  
 

 

7. Evaluation Methodology 

Accuracy = percentage of queries where the ground truth ICD code is present in the top 10 
predicted codes.  

I used a gradual implementation of methods to slowly improve the accuracy of the model.  

I first tested the individual models where BioBert is a medical specific embedding model and 
OpenAI is a general embedding model. Both had its pros and cons, I decided to use the ensemble 
method by combining both models so that it can take in a wider diversity of SnoMed terms 
depending of how specific the Snomed term is.  

Furthermore, I tried different reranking models which help to reorder predicted ICD codes based 
on deeper semantic understanding, improving the chances of correct predictions.  

The inbuilt GDS cosine similarity in Neo4j is often better than using an open-source model for 
retrieval tasks because it's tightly integrated into the graph engine, allowing high-speed, 
memory-efficient similarity searches directly on stored embeddings, without needing to export 
data or build custom indexing pipelines. It leverages optimized native graph structures, parallel 
computation, and supports dynamic queries on live graph data, making it faster, more scalable, 
and easier to maintain than managing external models or embedding indexes separately. 

Approach Accuracy 
BioBert model 72% 
OpenAI model 74% 

Hybrid (Merge K) 84% 
Hybrid + Rerank using open 

source model 
86% 



Hybrid + GDS cosine 
similarity 

95% 

 

8. Challenges Identified 
 
There are a few challenges along the way when trying to achieve the goal of 90% accuracy for 
top 10 ICD codes.  
 

1. Issue with .8/.9 chapters  
a. Initially there were alot of .8/.9 subchapters that was not able to be predicted due 

to the limited number of Snomed terms that formed relations with the ICD codes 
in the knowledge graph  

b. This was probably due to the limitations of LLM generation when it was 
classifying or generating description as after I did direct insertion of the Snomed 
terms there was an accuracy boost as about 302 unseen data contains such 
chapters 

c. Currently, it is left with 38% (116/302) that are still predicted inaccurately 
 

2. Wrong predictions of subchapters 
a. The above is an example of the wrongly predicted subchapters. This is a current 

problem that is affecting accuracy. 18/220 errors are derived from the wrongly 
predicted subchapters 



 
 

3. Uncertainty of the predictions against ground truth 
a. After some random sampling, it is realised that some of the ICD codes generated 

by the model are more specific than what the grountruth asked for. I have 
compiled a list for verification and the following is an example. 
 



 
 

4. ICD codes not found in Knowledge graph 
a. Previously, I found that a few of the ICD codes are not found in the SNOMED to 

ICD code mapping file and hence not inserted into the Knowledge graph 
b. After which, I got the ICD code master sheet and updated the knowledge graph 
c. Currently, the output of the predicted ICD codes for such a situation is still wrong. 

Perhaps, it is due to it existing as individual nodes and there are no relations and 
also the embeddings may be far fetched in comparison.  

 

9. Conclusion and Future Work 
 
The above are all the attempts I have made to reach the current accuracy of 95%. However, there 
are still improvements to be made since it is still unsatisfactory for now. One of the methods is to 
customize cypher queries (similar to customising prompts) to obtain the desired output.  
 
However, given the number of edge cases above, it might take awhile to continue improving the 
code such that the cases can be solved. 
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